

Mechanical Property Characterization of Polymer Film Surfaces and Interfaces

Aaron M. Forster

Constituent Contribution to Service Life Prediction

New Technical Idea

What is the Problem?

Dispersion, Photoreactivity, Matrix Chemistry (micro and nano-scale) contribute to the chemical, mechanical, and physical changes that are associated with macroscale coating degradation

Why Nanoindentation?

- ☐ Difficult to accurately measure the mechanical properties of small volumes at the surface of polymer films
 - Nanoindentation
 - Brillouin Light Scattering
 - Quartz Crystal Microbalance
 - Other Acoustic Methods
- Nanoindentation or Instrumented indentation testing (IIT) can provide mechanical property data at length scales that are several orders of magnitude less than bulk. micron size spatial resolution across exposed surface
 - measure 1 μm to 3 μm into surface
 - quantify a range of elastic and viscoelastic properties

Principles of Indentation

Quasi-static / Dynamic

Continuous Stiffness Method

h_{max} = maximum displacement
 h_f = final depth
 h_i = intercept displacement

$$E_r = \frac{\sqrt{\pi}}{2} \left(\frac{S}{\sqrt{A}} \right)$$

Dynamic oscillation is superposed over a given loading history Settings:

- harmonic amplitude = 1-50 nm frequency target = 10-250 Hz
- Better sensitivity to surface contact, provides continuous estimate of E

Dynamic Mechanical Characterization

Oscillate tip at sample surface

$$E_r' = \left[\frac{P_0}{\Delta h_0} \cos \delta\right] \frac{\sqrt{\pi}}{2\sqrt{A}} = \frac{S\sqrt{\pi}}{2\sqrt{A}}$$
, elastic

$$E_r'' = \left[\frac{P_0}{\Delta h_0} \sin \delta\right] \frac{\sqrt{\pi}}{2\sqrt{A}} = \frac{C\omega\sqrt{\pi}}{2\sqrt{A}}, \text{ viscous}$$

Technical Approach

Incorporation of Surface Mechanical Property Measurements

Storage and Loss

(chalking, brittleness, cracking)

Why is this difficult?

Incorporation of Surface Mechanical Property Measurements

Indenter tip geometries

or

Degraded film surface

- Tip-sample interaction must be characterized
 - Roughness
 - Presence of particles and particle geometry
 - Effects of tip geometry
- Multiple approaches for polymer analysis
 - No stand-outs
 - No clear method for difficult samples

Relationship between dispersion, chemistry, and mechanical properties for small volumes

Gantt chart - Organization

Y1 Y2 Y3 Y4

Quasi-static measurements

Modulus and Hardness - comparison to bulk

Link to failure indicators

Link to particle, dispersion, surface characteristics

Dynamic Measurements

Creep and Stress Relaxation Dynamic Mechanical (E'and E")

Comparison to bulk

Link to failure indicators and film characteristics

Continually refine and improve current measurement techniques and advance data analysis

New Techniques*

New metrologies for increasing resolution and accuracy

*: investigate additional mechanical property measurement methods

Particle Dispersion Effects Modulus

- Quantifying dispersion is important
- Solid line is the theoretical model $\longrightarrow E_r = 1 + 2.5\phi + 14.1\phi^2$
- Particle volume concentration (\$\phi\$) is not accurate with nanoparticles

Particle Dispersion in Films - SEM

Acrylic Urethane Filler B (250 nm), 2.5%

Acrylic Urethane Filler C (20 nm), 2.5%

Epoxy Filler B (250 nm), 2.5%

- ☐ SEM image of sectioned films (microtomed) before degradation
 - The lack of dispersion in AU Filler C and Epoxy Filler B are evident
 - AU Filler B has much better dispersion, but clumps are still present

No Difference in Pigment for Filled Epoxies

*Error bars represent 95% confidence levels

Differences in Pigment for Acrylic Urethane

Are the differences dispersion or photoreactivity?

^{*}Error bars represent one standard deviation

Styrene-Acrylic Latex Exhibits Less Stiffening

[†]AFM courtesy of X. Gu

Difference in Film Morphology for Latex

Elastic Modulus Quantified Across the Interface

Fresh Epoxy: Modulus (3.8 Gpa ± 0.1Gpa)

Degraded Sample: Surface Modulus (5.0 Gpa \pm 0.1 Gpa)

Dynamic Measurements depend on Film Properties

- Tip-sample interactions
- Viscoelastic materials

Storage Modulus Increases with Crosslinking

Bulk mechanical measurements of a rubbery sealant material exposed to accelerated weathering conditions

- Dynamic mechanical thermal analysis:
 Temperature sweep undertaken at 1Hz from -100°C to 120°C.
- ☐ Indication for macroscopic crosslinking occurs.
- ☐ Transition between glassy modulus and rubbery modulus become less distinctive, indicating specimens become more heterogeneous.

Exposure environment: 30°C and 0% relative humidity

Summary

- Conduct modulus measurements on filled/unfilled coatings
 - Epoxy, acrylic urethane, and latex
 - Bulk measurements on sealant materials
- Track changes in modulus at the surface of the coatings throughout the degradation cycle
 - Epoxy and acrylic urethane
- Challenges remain:
 - Effect of roughness
 - Influence of particle size, dispersion
 - Viscoelastic characterization of degraded surfaces
 - Tip-Sample interaction

Gantt chart – Progress Metrics

Y1 Y2 Y3 Y4

Quasi-static measurements

- Modulus comparison to bulk
- □ failure indicators identified
- correlations to dispersion, photoreactivity, and chemistry

Viscoelastic Measurements

- Storage and loss modulus ability to measure and comparison to bulk
- □ Creep and stress relaxation ability to measure and comparison to bulk
- □ Correlations to dispersion, photoreactivity, and chemistry
- Modeling the tip-sample interaction

Impact

- Develop methodologies that relate mechanical properties (quasi-static and dynamic) to durability analysis
- A link between filler chemistry, dispersion, and mechanical properties that is incorporated into service life prediction
 - Scales from constituent to coating performance
- Fundamental material system chosen and evaluated for performance metrics
 - engineered durability cheaper, better, faster!

Acknowledgements

- □ Pete Drzal PPG
- □ Stephanie Watson NIST
- Amanda Forster NIST
- ☐ LiPiin Sung NIST
- ☐ Xiaohong Gu NIST
- ☐ Jeff Comer Cal Poly
- □ Laura Johnson Cal Poly
- Tom Juliano Army Research Laboratory

Questions?

Particle Dispersion in Films - Confocal

Acrylic Urethane - 2.5 % Filler C

Film Topography After Degradation

Confocal Microscopy

 $Sq = 0.067 \mu m$

 $Sq = 0.181 \mu m$

- D 2D projection image (150x), scale bar is 20 μm, area is 60 μm x 60 μm
- Increase in surface roughness, exposure of pigment, and pitting occur with increased exposure (20 weeks)
- Presents a challenge for indentation and ATR measurements

Dynamic Mechanical Characterization

$$E_r'' = \left[\frac{P_0}{\Delta h_0} \sin \delta\right] \frac{\sqrt{\pi}}{2\sqrt{A}} = \frac{C \omega \sqrt{\pi}}{2\sqrt{A}}$$
 •Assumes harmonic unloading is elastic •Most polymers are viscoelastic!

Note:

- •Works well on glassy and elastomeric materials
- Sample volume is changing

- Soft materials require large contacts
- •Beware of treating like a black box

Dynamic Measurements

The agreement is pretty good
The Epoxy has more strain dependence.

Dynamic Properties

$$E'_{r} = \frac{S\sqrt{\pi}}{2\sqrt{A}} \qquad \qquad E' = \frac{\sqrt{\pi}}{2\sqrt{A}} \left(\frac{P_{0}}{h_{0}} \cos \delta\right)$$

$$E''_r = \frac{\omega C_s \sqrt{\pi}}{2\sqrt{A}} \qquad E'' = \frac{\sqrt{\pi}}{2\sqrt{A}} \left(\frac{P_0}{h_0} \sin \delta\right)$$

This analys is a good starting place, but should fail when the materials show any viscoelastic nature. The geometry of the nanoindentor does not approximate the gap loading conditions.

Motivation

- Commercial coatings add particles (pigments) as filler
 - Improves optical properties
 - ☐ Whiteness, brightness, opacity, ...
 - Improves mechanical properties
 - Scratch resistance, modulus, ...
- TiO₂ is a semiconducting material that is commonly used

- Changes in photodegradation mechanisms
- Questions:
 - Does photoreactivity affect weatherability?
 - How do surface mechanical properties change with weathering?
 - Do mechanical changes correlate to thermal or chemical measurements at the degraded film surface?

New Technical Idea

Indoor

Outdoor

Service Life Prediction Clear Coatings

- indoor now drives performance metrics because moved to a dosage model

